Defense market trends for microwave applications in Airborne Early Warning & Control Systems

Contributor:  Asif Anwar
Posted:  01/27/2012  12:00:00 AM EST
Rate this Article: (4.0 Stars | 1 Vote)
Tags:   AEW

This article aims to explore microwave applications for radar, communications and EW systems using the AEW&C platform as a representative example of the trends in the defence industry.

Airborne Early Warning & Control is a broad term used to describe the airborne capability to detect air, land or water threats and direct a response, typically from a large distance. The radar, control and aircraft platforms are diverse but high performance semiconductor devices and electronic technologies enable them all. The rationale behind airborne surveillance is simple: the more you see, the more you know. High-altitude aircraft and powerful radars achieve the "more you see" capability and sophisticated sensor, on-board processing and communications capability satisfy the "more you know" dimension. Earlier versions of this capability were called Airborne Warning and Control System (AWACS) or Airborne Early Warning (AEW). In fact, one of the most widely deployed platforms, the E-3 Sentry, has become commonly known as "AWACS". These systems play a major role on the modern battlefield by providing real-time intelligence and the control needed to maintain air superiority over the combat area. These platforms are not solely for wartime use. Several nations devote resources exclusively to enable surveillance of borders in peacetime.

Current airborne surveillance includes not only detection, tracking and identification of targets but also execution of actions that result from data derived from its suite of sensors. These actions may be offensive, like the control of other aerial assets (mainly interceptors) or defensive, like initiation of electronic countermeasures. As the processing capabilities on these aircraft have increased, their control capabilities have also improved and expanded to the point where the mission is now exclusively Airborne Early Warning & Control (AEW&C).

Airborne Early Warning and Control capabilities provide a fundamental building block of a national defense or combat strategy. Until recently, design and development of AEW&C platforms had been the near-exclusive domain of US military OEMs, but as countries acknowledge the importance of the mission, more AEW&C development effort is being undertaken in other regions and countries including Europe, Israel, China, India and Russia.

The market is thus growing along two paths: countries with mature capabilities will seek to upgrade to the latest technology to outpace threats and countries with rudimentary or no capability will purchase new AEW&C platforms. As existing users expand or upgrade their coverage and new countries implement services, we believe the number of planes in service will see a steady increase and with upgrades and retrofits.

Strategy Analytics forecasts a market growing to over $52 billion by 2020. The  total electronics content for radar, communications, computers, sensors and other related systems will increase over time as technology is upgraded growing to $22 billion.

Figure 1- Cumulative AEW&C Platform Market to 2020

All AEW&C platforms make extensive use of advanced electronics and component technology for radar, communications, EW, computer, sensor and other related systems. The diversity of AEW&C platforms incorporates a range of technologies including tubes, silicon/GaAs/GaN/other microelectronics and optoelectronics. The basic sub-systems found on-board a typical AEW&C platform are as follows:

  • Radar
  • Data processing
  • Displays
  • Identification Friend and Foe (IFF)
  • Radio & Data Communications
  • Navigation
  • Electronic Support Measures (ESM)
  • Electronic Counter Measures (ECM)

These sub-systems require a control system to ensure that all are functioning correctly at the right time. AEW&C aircraft also have individual electronic units for other systems, notably the flight controls and engines. Collectively these represent a substantial opportunity for electronic components and associated hardware.

From an electronics perspective, even though the yearly increase in platforms is relatively small, the deployed base is very large and the attractive aspect of this market is the development time, longevity and expense of the airframe platform which makes it uniquely suited to the upgrade market.

Figure 2 - Cumulative AEW&C Electronics Segmentation

They most important system aboard the AEW&C platform is the main radar sensor. A typical AEW&C will have at least two radar systems: the main radar for the early warning functions and a smaller nose-mounted unit for general use in situations such as adverse weather alerts. New platform developments and upgrades are typically utilizing some form of phased array radar to perform these functions. There are two basic designations for electronically scanned arrays: passive and active. The phased array concepts are identical for both types, but the implementation is different, with the main difference being the transmit power source. Older AEW&C platforms predominantly use passive arrays utilizing TWT-based power sources with radars in rotating rotodomes, while new platforms are increasingly making use of GaAs-based T/R modules in active arrays.

As an example, the E-3D Sentry, best known as the 'AWACS', uses an older PESA (Passive Electronically Scanned Array) radar that continues to provide several major air forces with a system well matched to their needs. The main radar antenna is located inside a rotating rotodome mounted above the spine of the aircraft. This rotodome contains several systems, primarily the Northrop Grumman AN/APY-1/2 search radar on one side of a 30 ft long beam structure and on the other a set of aerials for the IFF AN/APX-103 interrogator, supplied by the Telephonics Corporation, and data-link fighter-control (TADIL-C) antennas.

There have been several upgrades to this program, but there is no plan to replace the PESA radar with a solid-state AESA (Active Electronically Scanned Array radar). One of the biggest upgrades for the AWACS was the 'Radar System Improvement Program' or RSIP that has been referred to as 'Sharpening the Eye of the Eagle' and replaces aging original equipment. RSIP was a joint US/NATO development program involving major hardware and software-intensive modification and costing $1.2 billion for the 32 US, 17 NATO and 7 UK E-3 aircraft.

At the other end of the spectrum is the US Navy E-2 platform, the most popular AEW&C plane in the world. The US Navy has added incremental improvements, the most recent implemented in the Hawkeye 2000, but they are also performing a major platform upgrade with the E-2D 'Advanced Hawkeye'. This variant will revamp the radar and include the Northrop Grumman APY-9 AESA- (Active Electronically Scanned Array) based radar. Its new rotodome, developed by L-3 Communications Randtron Antenna Systems, will provide 360-degree scanning capability in a hybrid mechanical/electrical scanning arrangement.

In an AESA implementation, each element is driven by a transmit/receive (T/R) module. These T/R modules contain solid-state MMICs, typically GaAs for the transmit/receive paths and Silicon for the control functions with future trends pointing towards GaN technologies being used in conjunction with SiGe.

Development time, cost, mission and radar performance are just a few of the trade-off characteristics that make platform upgrade such a multi-layered decision process. As described, most of the earliest, most popular aircraft platforms were modified to incorporate rotating rotodomes. A discussion of modifications and trade-offs must often be viewed in the context of the entire AEW&C platform and whether the improved performance and capability of an AESA radar does not offset the cost of retrofitting the rest of the platform.

Changing focus to communications, information must be disseminated quickly and efficiently to all assigned agencies working with the AEW&C aircraft. The users of this information generally fall into two categories: on-board and external staff. In practice, the AEW&C platform is at the centre of a three-dimensional network of forces ranging from relay satellites and ground stations to strike aircraft and other assets. Other on-board communications capabilities include secure voice and data communication systems.

AEW&C platforms must ensure that all communications are secure from enemy eavesdropping. To address this issue, the Joint Tactical Information Distribution System (JTIDS) was developed and is now common to most airborne assets. An additional avenue to address this issue is AWACS systems providing anti-jam communication for information distribution, position location and identification capabilities.

As far back as 1989, an improved communication system named Have Quick A-NETS, was deployed to address secure communications. This system provides secure, anti-jam contact with other AWACS platforms, friendly aircraft and ground stations. It is also included in French and RAF systems. The AN/ARC-164 HAVE QUICK II radios are used for air-to-air, air-to-ground and ground-to-air communications and are deployed on all Army rotary wing aircraft. By 2007, nearly all US military aircraft had adopted HAVE QUICK. Improvements include HAVE QUICK II Phase 2, and a "Second generation Anti-Jam Tactical UHF Radio for NATO" called SATURN. The latter features more complex frequency hopping.

Another system called enhanced TADIL-A Link-11 ensures high-speed exchange of radar information. Also known as TADIL-J, or Link-16 it requires additional computer memory to anticipate new ESM and future enhancements. The Class 2H JTIDS terminal is a secure digital communications system that allows E-3 crew members to communicate with other participants such as fighter aircraft, Navy units and ground-based units during air battle. It has a capability to identify units using common points of reference.

Looking at the communications systems in general, common trends across the board include a move towards higher frequencies and wideband performance, driven by a need to have multi-mode, multi-band capabilities that will enable these radios to act as nodes in the total battlespace. This is coupled with an increasing emphasis on data and efficient spectrum use that will drive linearity requirements as well as the continued development of SDR and cognitive radio capabilities. While Si-based power amplifiers are the incumbent technology, these factors will provide opportunities for other RF technologies that can couple high power outputs with wideband performance, linearity and higher efficiencies.

ESM (Electronic Support Measures) provide for a passive detection, electronic surveillance capability to detect and identify air and surface-based emitters. The ESM system passively detects signals from hostile, neutral, friendly, and unknown emitters and identifies targets, augmenting present on-board sensors. ESM equipment consists of sensitive direction finding radar-warning receivers coupled to an extensive software threat library to permit the calculation of bearing and type tracks. These are made available in a format readable by the data processing software, allowing the operators to passively identify sources of transmission oftentimes at ranges nearly double those of active radar and with useful receive sensitivity.

Electronic Counter Measures (ECM) are now considered essential for all military and even some chartered civil aircraft. There may be times when high-value platforms such as AEW&C will have to rely on self-defence when enemy fighters or missiles get too close. Lacking offensive armament, the AEW&C relies on special ECM and electronic counter-countermeasures (ECCM) to confuse and deflect incoming threats. The concept of 'Smart Jamming' for example involves detecting the oncoming missile, classifying it by identifying its seeker signature and then sending a jamming signal in a particular band to break its lock. These types of concepts are leading to what may be described as a “no channel” concept in which the systems are tasked with looking at a complete frequency range resulting in multiple channels being handled by one receiver. For jamming applications this has to be coupled with high power capabilities across the frequency range and this has opened the door for GaN-based systems in this area.

The AEW&C platform is a good representative example of the trends in the defense industry that will drive demand for RF technologies. For communications, electronic warfare and radar systems, both in AEW&C as well as in the broader defense sector, capabilities are expanding around specific parameters such as broadband performance, power, linearity and digitization. No one semiconductor technology solution will singularly satisfy every system requirement and we will see different technologies used side-by-side depending on the requirements of the system and platform. While global economics have forced governments to rethink defence priorities, the desire for technology differentiation will lead to continued opportunities for electronic systems and the enabling semiconductors in both emerging platforms as well as through upgrade/retrofit channels.

Asif Anwar Contributor:   Asif Anwar


comments powered by Disqus


Advertise With Us

Join Defence IQ